MA 242 : PARTIAL DIFFERENTIAL EQUATIONS (August-December, 2018)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

Problem set 3

1. Let $u, v \in C^2(\overline{\Omega})$. Using the Gauss-Green theorem, the following identities

(a)
$$\int_{\Omega} \Delta u = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}$$
.
(b) $\int_{\Omega} v \Delta u = -\int_{\Omega} \nabla u \cdot \nabla v + \int_{\partial \Omega} \frac{\partial u}{\partial \nu} v$.
(c) $\int_{\Omega} (v \Delta u - u \Delta) = \int_{\partial \Omega} \left(\frac{\partial u}{\partial \nu} v - u \frac{\partial v}{\partial \nu} \right)$.
Here, $\frac{\partial u}{\partial \nu} = \nabla u \cdot \nu$ is the normal derivative and $\nabla = \left(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n} \right)$ is the grad operator.

- 2. When n = 2, derive the Laplace operator Δ in polar form.
- 3. [Spherical Symmetry] Let R is a rotational matrix, that is $RR^t = I$ and u be harmonic in \mathbb{R}^n . Define, v by v(x) = u(Rx), then show that v is harmonic in \mathbb{R}^n .
- 4. Let v(r) = u(|x|) where $r = |x| = (\sum x_i^2)^{1/2}$. Show that

$$\Delta u \equiv \ddot{v}(r) + \frac{n-1}{r}\dot{v}.$$

Solve the equation to obtain the fundamental solution ϕ .

5. Let ϕ be the fundamental solution of the Laplace operator. Show that there exists a constant C > 0 such that

$$|D\phi(x)| \le \frac{C}{|x|^{n-1}}, \ |D^2\phi(x)| \le \frac{C}{|x|^n}, \ x \ne 0.$$

- 6. Let ϕ be the fundamental solution for the Laplace operator Δ . Prove that ϕ and $\frac{\partial \phi}{\partial x_i}$ for all $i = 1, \dots n$ are locally integrable, but $\frac{\partial^2 \phi}{\partial x_i \partial x_j}$ for all $i, j = 1, \dots n$ are not locally integrable.
- 7. Let $f \in C_c^2(\mathbb{R}^n)$ and ϕ be the fundamental solution for the Laplace operator Δ . Define $I_{\varepsilon} = \int_{B(0,\varepsilon)} \phi(y)(\Delta f)(x-y)dy$. Show that there exists a constant C > 0 such that

$$|I_{\varepsilon}| \leq \begin{cases} C\varepsilon^2 |log\varepsilon|, \text{ if } n = 2\\ C\varepsilon^2 \text{ if } n \geq 3 \end{cases}$$

Also compute $\frac{\partial \phi}{\partial \nu}$ on $\partial B(0, \varepsilon)$.

8. Let Ω be a domain in \mathbb{R}^2 symmetric about the x-axis and let $\Omega^+ = \{(x, y) : y > 0\}$ be upper part. Assume $u \in C(\overline{\Omega^+})$ is harmonic in Ω^+ with u = 0 on $\partial \Omega^+ \cap \{y = 0\}$. Define

$$v(x,y) = \begin{cases} u(x,y) & \text{if } y \ge 0, \ (x,y) \in \Omega, \\ -u(x,-y) & \text{if } y < 0, \ (x,y) \in \Omega. \end{cases}$$

Show that v is harmonic.

9. Let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a solution of

$$\Delta u + \sum a_k(x) \frac{\partial u}{\partial x_k} + c(x)u = 0$$
 in Ω

with c(x) < 0 in Ω , u = 0 on $\partial \Omega$ and a_k 's are smooth. Show that $u \equiv 0$.

- 10. Consider the PDE, $-\Delta u = \lambda u$ in Ω , u = 0 on $\partial \Omega$ where λ is a scalar and Ω is a bounded open set. If $\lambda \leq 0$, prove that $u \equiv 0$ and there is no non-trivial solution.
- 11. Let $u \in C^2(\overline{B(0;1)})$ solves $-\Delta u = f$ in B(0;1), u = 0 on $\partial B(0;1)$. Show that there exists C > 0 such that

$$\max_{x \in B(0;1)} |u(x)| \le C \max_{x \in B(0;1)} |f|.$$

(Hint: Consider the problem with f = 1 and f = M where $M = \max_{x \in B(0;1)} |f|$.) More generally, if u solves $-\Delta u = f$ in B(0;1), u = g on $\partial B(0;1)$, then

$$\max_{x \in B(0;1)} |u(x)| \le C \left(\max_{x \in \partial B(0;1)} |g| + \max_{x \in B(0;1)} |f| \right).$$

12. Show that the mapping $x \to \frac{x - e_n}{|x + e_n|}$, $e_n = (0, ... 1)$, is a C^{∞} function mapping the upper half space \mathbb{R}^n_+ onto the unit ball $B_1(0)$ in a one-one fashion. Further, show that the boundary $\{x \in \mathbb{R}^n : x_n = 0\}$ is mapped onto the unit sphere $S_1(0) = \partial B_1(0)$.

- 13. Use the mapping in the above Exercise 12 and Poisson formula for \mathbb{R}^n_+ to derive Poisson formula for $B_1(0)$.
- 14. Let Ω be an open, bounded set in \mathbb{R}^N . Suppose $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies $\Delta u = -1$ in Ω , u = 0 on $\partial\Omega$. Show that for $x \in \Omega$, $u(x) \geq \frac{1}{2N}(d(x,\partial\Omega))^2$. (Suggestion: For fixed $x_0 \in \Omega$, consider the harmonic function $u(x) + \frac{1}{2N}|x x_0|^2$, $x \in \Omega$.)
- 15. If u is a harmonic function in \mathbb{R}^n satisfying $|u(x)| \leq C(1+|x|^k)$, for some non-negative integer k and all $x \in \mathbb{R}^n$, show that u is a polynomial of degree at most k. In fact, the result is true for any non-negative real k, then u is a polynomial of degree at most [k].
- 16. (Harnack's inequality) Let $u \ge 0$ be harmonic in a domain Ω . Let $V \subset \subset \Omega$ be connected, open and let $d = d(V, \partial \Omega)$ be the distance from V to the boudnary $\partial \Omega$. Use MVT in suitable open balls to prove that

$$2^n u(y) \ge u(x) \ge 2^{-n} u(y)$$

for all $x, y \in V$ satisfying $|x - y| \leq \frac{r}{4}$. Use this estimate to prove the following: There are constants $C_1, C_2 > 0$ depending on V such that

$$C_1 u(y) \ge u(x) \ge C_2 u(y)$$

for all $x, y \in V$.