MA 242 : Partial Differential Equations (August-December, 2018)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

Problem set 3

1. Let $u, v \in C^{2}(\bar{\Omega})$. Using the Gauss-Green theorem, the following identites
(a) $\int_{\Omega} \Delta u=\int_{\partial \Omega} \frac{\partial u}{\partial \nu}$.
(b) $\int_{\Omega} v \Delta u=-\int_{\Omega} \nabla u \cdot \nabla v+\int_{\partial \Omega} \frac{\partial u}{\partial \nu} v$.
(c) $\int_{\Omega}(v \Delta u-u \Delta)=\int_{\partial \Omega}\left(\frac{\partial u}{\partial \nu} v-u \frac{\partial v}{\partial \nu}\right)$.

Here, $\frac{\partial u}{\partial \nu}=\nabla u \cdot \nu$ is the normal derivative and $\nabla=\left(\frac{\partial}{\partial x_{1}}, \cdots \frac{\partial}{\partial x_{n}}\right)$ is the grad operator.
2. When $n=2$, derive the Laplace operator Δ in polar form.
3. [Spherical Symmetry] Let R is a rotational matrix, that is $R R^{t}=I$ and u be harmonic in \mathbb{R}^{n}. Define, v by $v(x)=u(R x)$, then show that v is harmonic in \mathbb{R}^{n}.
4. Let $v(r)=u(|x|)$ where $r=|x|=\left(\sum x_{i}^{2}\right)^{1 / 2}$. Show that

$$
\Delta u \equiv \ddot{v}(r)+\frac{n-1}{r} \dot{v} .
$$

Solve the equation to obtain the fundamental solution ϕ.
5. Let ϕ be the fundamental solution of the Laplace operator. Show that there exists a constant $C>0$ such that

$$
|D \phi(x)| \leq \frac{C}{|x|^{n-1}},\left|D^{2} \phi(x)\right| \leq \frac{C}{|x|^{n}}, \quad x \neq 0
$$

6. Let ϕ be the fundamental solution for the Laplace operator Δ. Prove that ϕ and $\frac{\partial \phi}{\partial x_{i}}$ for all $i=1, \cdots n$ are locally integrable, but $\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}$ for all $i, j=1, \cdots n$ are not locally integrable.
7. Let $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$ and ϕ be the fundamental solution for the Laplace operator Δ. Define $I_{\varepsilon}=\int_{B(0, \varepsilon)} \phi(y)(\Delta f)(x-y) d y$. Show that there exists a constant $C>0$ such that

$$
\left|I_{\varepsilon}\right| \leq\left\{\begin{array}{l}
C \varepsilon^{2}|\log \varepsilon|, \text { if } n=2 \\
C \varepsilon^{2} \text { if } n \geq 3
\end{array}\right.
$$

Also compute $\frac{\partial \phi}{\partial \nu}$ on $\partial B(0, \varepsilon)$.
8. Let Ω be a domain in \mathbb{R}^{2} symmetric about the x-axis and let $\Omega^{+}=\{(x, y): y>0\}$ be upper part. Assume $u \in C\left(\overline{\Omega^{+}}\right)$is harmonic in Ω^{+}with $u=0$ on $\partial \Omega^{+} \cap\{y=0\}$. Define

$$
v(x, y)= \begin{cases}u(x, y) & \text { if } y \geq 0,(x, y) \in \Omega \\ -u(x,-y) & \text { if } y<0,(x, y) \in \Omega\end{cases}
$$

Show that v is harmonic.
9. Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be a solution of

$$
\Delta u+\sum a_{k}(x) \frac{\partial u}{\partial x_{k}}+c(x) u=0 \text { in } \Omega
$$

with $c(x)<0$ in $\Omega, u=0$ on $\partial \Omega$ and a_{k} 's are smooth. Show that $u \equiv 0$.
10. Consider the $\mathrm{PDE},-\Delta u=\lambda u$ in $\Omega, u=0$ on $\partial \Omega$ where λ is a scalar and Ω is a bounded open set. If $\lambda \leq 0$, prove that $u \equiv 0$ and there is no non-trivial solution.
11. Let $u \in C^{2}(\overline{B(0 ; 1)})$ solves $-\Delta u=f$ in $B(0 ; 1), u=0$ on $\partial B(0 ; 1)$. Show that there exists $C>0$ such that

$$
\max _{x \in B(0 ; 1)}|u(x)| \leq C \max _{x \in B(0 ; 1)}|f|
$$

(Hint: Consider the problem with $f=1$ and $f=M$ where $M=\max _{x \in B(0 ; 1)}|f|$.) More generally, if u solves $-\Delta u=f$ in $B(0 ; 1), u=g$ on $\partial B(0 ; 1)$, then

$$
\max _{x \in B(0 ; 1)}|u(x)| \leq C\left(\max _{x \in \partial B(0 ; 1)}|g|+\max _{x \in B(0 ; 1)}|f|\right)
$$

12. Show that the mapping $x \rightarrow \frac{x-e_{n}}{\left|x+e_{n}\right|}, e_{n}=(0, \ldots 1)$, is a C^{∞} function mapping the upper half space \mathbb{R}_{+}^{n} onto the unit ball $B_{1}(0)$ in a one-one fashion. Further, show that the boundary $\left\{x \in \mathbb{R}^{n}: x_{n}=0\right\}$ is mapped onto the unit sphere $S_{1}(0)=\partial B_{1}(0)$.
13. Use the mapping in the above Exercise 12 and Poisson formula for \mathbb{R}_{+}^{n} to derive Poisson formula for $B_{1}(0)$.
14. Let Ω be an open, bounded set in \mathbb{R}^{N}. Suppose $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfies $\Delta u=-1$ in $\Omega, u=0$ on $\partial \Omega$. Show that for $x \in \Omega, u(x) \geq \frac{1}{2 N}(d(x, \partial \Omega))^{2}$. (Suggestion: For fixed $x_{0} \in \Omega$, consider the harmonic function $u(x)+\frac{1}{2 N}\left|x-x_{0}\right|^{2}, x \in \Omega$.)
15. If u is a harmonic function in \mathbb{R}^{n} satisfying $|u(x)| \leq C\left(1+|x|^{k}\right)$, for some non-negative integer k and all $x \in \mathbb{R}^{n}$, show that u is a polynomial of degree at most k. In fact, the result is true for any non-negative real k, then u is a polynomial of degree at most $[k]$.
16. (Harnack's inequality) Let $u \geq 0$ be harmonic in a domain Ω. Let $V \subset \subset \Omega$ be connected, open and let $d=d(V, \partial \Omega)$ be the distance from V to the boudnary $\partial \Omega$. Use MVT in suitable open balls to prove that

$$
2^{n} u(y) \geq u(x) \geq 2^{-n} u(y)
$$

for all $x, y \in V$ satisfying $|x-y| \leq \frac{r}{4}$. Use this estimate to prove the following: There are constants $C_{1}, C_{2}>0$ depending on V such that

$$
C_{1} u(y) \geq u(x) \geq C_{2} u(y)
$$

for all $x, y \in V$.

