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Problem set 3

1. Let u, v ∈ C2(Ω). Using the Gauss-Green theorem, the following identites

(a)

∫
Ω

∆u =

∫
∂Ω

∂u

∂ν
.

(b)

∫
Ω

v∆u = −
∫

Ω

∇u · ∇v +

∫
∂Ω

∂u

∂ν
v.

(c)

∫
Ω

(v∆u− u∆) =

∫
∂Ω

(
∂u

∂ν
v − u∂v

∂ν

)
.

Here,
∂u

∂ν
= ∇u · ν is the normal derivative and ∇ =

(
∂

∂x1

, · · · ∂

∂xn

)
is the grad operator.

2. When n = 2, derive the Laplace operator ∆ in polar form.

3. [Spherical Symmetry] Let R is a rotational matrix, that is RRt = I and u be harmonic in Rn.
Define, v by v(x) = u(Rx), then show that v is harmonic in Rn.

4. Let v(r) = u(|x|) where r = |x| = (
∑
x2
i )

1/2
. Show that

∆u ≡ v̈(r) +
n− 1

r
v̇.

Solve the equation to obtain the fundamental solution φ.

5. Let φ be the fundamental solution of the Laplace operator. Show that there exists a constant
C > 0 such that

|Dφ(x)| ≤ C

|x|n−1
, |D2φ(x)| ≤ C

|x|n
, x 6= 0.
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6. Let φ be the fundamental solution for the Laplace operator ∆. Prove that φ and
∂φ

∂xi
for all

i = 1, · · ·n are locally integrable, but
∂2φ

∂xi∂xj
for all i, j = 1, · · ·n are not locally integrable.

7. Let f ∈ C2
c (Rn) and φ be the fundamental solution for the Laplace operator ∆. Define

Iε =

∫
B(0,ε)

φ(y)(∆f)(x− y)dy. Show that there exists a constant C > 0 such that

|Iε| ≤

{
Cε2|logε|, if n = 2

Cε2 if n ≥ 3

Also compute
∂φ

∂ν
on ∂B(0, ε).

8. Let Ω be a domain in R2 symmetric about the x-axis and let Ω+ = {(x, y) : y > 0} be upper
part. Assume u ∈ C(Ω+) is harmonic in Ω+ with u = 0 on ∂Ω+ ∩ {y = 0}. Define

v(x, y) =

{
u(x, y) if y ≥ 0, (x, y) ∈ Ω,
−u(x,−y) if y < 0, (x, y) ∈ Ω.

Show that v is harmonic.

9. Let u ∈ C2(Ω) ∩ C0(Ω) be a solution of

∆u+
∑

ak(x)
∂u

∂xk
+ c(x)u = 0 in Ω

with c(x) < 0 in Ω, u = 0 on ∂Ω and ak’s are smooth. Show that u ≡ 0.

10. Consider the PDE, −∆u = λu in Ω, u = 0 on ∂Ω where λ is a scalar and Ω is a bounded
open set. If λ ≤ 0, prove that u ≡ 0 and there is no non-trivial solution.

11. Let u ∈ C2(B(0; 1)) solves −∆u = f in B(0; 1), u = 0 on ∂B(0; 1). Show that there exists
C > 0 such that

max
x∈B(0;1)

|u(x)| ≤ C max
x∈B(0;1)

|f |.

(Hint: Consider the problem with f = 1 and f = M where M = max
x∈B(0;1)

|f |.) More generally,

if u solves −∆u = f in B(0; 1), u = g on ∂B(0; 1), then

max
x∈B(0;1)

|u(x)| ≤ C

(
max

x∈∂B(0;1)
|g|+ max

x∈B(0;1)
|f |
)
.

12. Show that the mapping x → x− en
|x+ en|

, en = (0, . . . 1), is a C∞ function mapping the upper

half space Rn
+ onto the unit ball B1(0) in a one-one fashion. Further, show that the boundary

{x ∈ Rn : xn = 0} is mapped onto the unit sphere S1(0) = ∂B1(0) .
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13. Use the mapping in the above Exercise 12 and Poisson formula for Rn
+ to derive Poisson

formula for B1(0).

14. Let Ω be an open, bounded set in RN . Suppose u ∈ C2(Ω) ∩ C0(Ω̄) satisfies ∆u = −1 in

Ω, u = 0 on ∂Ω. Show that for x ∈ Ω, u(x) ≥ 1

2N
(d(x, ∂Ω))2. (Suggestion: For fixed x0 ∈ Ω,

consider the harmonic function u(x) +
1

2N
|x− x0|2, x ∈ Ω.)

15. If u is a harmonic function in Rn satisfying |u(x)| ≤ C(1+ |x|k), for some non-negative integer
k and all x ∈ Rn, show that u is a polynomial of degree at most k. In fact, the result is true
for any non-negative real k, then u is a polynomial of degree at most [k].

16. (Harnack’s inequality) Let u ≥ 0 be harmonic in a domain Ω. Let V ⊂⊂ Ω be connected,
open and let d = d(V, ∂Ω) be the distance from V to the boudnary ∂Ω. Use MVT in suitable
open balls to prove that

2nu(y) ≥ u(x) ≥ 2−nu(y)

for all x, y ∈ V satisfying |x − y| ≤ r

4
. Use this estimate to prove the following: There are

constants C1, C2 > 0 depending on V such that

C1u(y) ≥ u(x) ≥ C2u(y)

for all x, y ∈ V .
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